
B R I E F R E P O R T

Using Clinicians’ Search Query Data
to Monitor Influenza Epidemics

Mauricio Santillana,1,2 Elaine O. Nsoesie,2,3 Sumiko R. Mekaru,2

David Scales,2,4 and John S. Brownstein2,3,5

1School of Engineering and Applied Sciences, Harvard University, Cambridge,
2Children’s Hospital Informatics Program, Boston Children’s Hospital, 3Department
of Pediatrics, Harvard Medical School, Boston, and 4Department of Internal
Medicine, Cambridge Health Alliance, Massachusetts; and 5Department of
Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal,
Quebec, Canada

Search query information from a clinician’s database, UpTo-
Date, is shown to predict influenza epidemics in the United
States in a timely manner. Our results show that digital dis-
ease surveillance tools based on experts’ databases may be
able to provide an alternative, reliable, and stable signal for
accurate predictions of influenza outbreaks.
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The discovery of unusual outbreaks often depends on individual
health practitioners who can promptly identify abnormal cir-
cumstances and then report those concerns to the greater com-
munity [1, 2]. Although the impact of these reports cannot be
overstated, recent developments in Internet technologies have
demonstrated the power of the crowd as well. For example,
crowdsourcing approaches allow members of the public to com-
plete tasks relevant to a larger goal [3]. Search activity on diseas-
es such as influenza and dengue has been shown to correlate
with traditional surveillance data in multiple instances [4–8].
Google Flu Trends (GFT) demonstrated a link between influenza-
related search query data and the Centers for Disease Control
and Prevention’s (CDC) influenza-like Illness (ILI) index [5].
Other examples include the use of search query data from
Yahoo! [9] and from Baidu [8] to track influenza epidemics. In-
ternet search queries are available much earlier than data from

validated traditional surveillance systems and have the potential
to provide timely epidemiologic intelligence to inform preven-
tion messaging and healthcare facility staffing decisions.

The potential for the public’s search activity to be influenced
by anxiety, fears, and rumors raises concerns regarding reliabil-
ity [10–13]. Although recent revisions to GFT have shown
that these concerns can be partially mitigated [13–15], shifting
Internet-based surveillance from the entire public to subject-
matter experts may maintain timeliness while generating a
more reliable and stable signal requiring much less data. A re-
cent small retrospective study using data on queries to a Finnish
primary care guidelines database demonstrated, for example,
that disease-specific queries for Lyme disease, tularemia, and
other infectious diseases correlated well with concurrent con-
firmed cases [16].

Here, we show that UpToDate (www.uptodate.com), a phy-
sician-authored clinical decision support Internet resource that
is used by 700 000 clinicians in 158 countries and almost 90% of
academic medical centers in the United States, can be used for
syndromic surveillance of influenza. Specifically, we use UpTo-
Date’s search query activity related to ILI to design a timely sen-
tinel of influenza incidence in the United States.

METHODS

Data
UpToDate is a professional database utilized by healthcare prac-
titioners for point-of-care decisions. The information provided
is rigorously authored and edited by experienced physicians.
Also, UpToDate topics are accessed >18 million times monthly,
and studies suggest that information provided through the site
helps improve healthcare outcomes in hospitals [17–19].

In collaboration with UpToDate, we obtained search volume of
23 search terms related to ILI, as well as overall search activity
from November 2011 to November 2013 for US accounts only.
The search terms were as follows: influenza,Haemophilus influen-
zae, flu, parainfluenza, H1N1, H7N9, H5N1, H3N2, grippe, gripe,
adenovirus, rhinovirus, respiratory syncytial virus, metapneumo-
virus, coronavirus, Bordetella pertussis,Mycoplasma pneumoniae,
pneumonia, bronchitis, H9N2, sinusitis, upper respiratory tract
infection, and Tamiflu. We obtained a weekly search fraction
for each search term, at any given point in time, by dividing the
number of searches for a given phrase by the total number of
searches in the UpToDate database, thus minimizing the effects
of variation in the overall use of the UpToDate database through
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time. We also obtained the national ILI weekly index from the
CDC for the same time period to use as a comparator (available
at: http://www.cdc.gov/flu/weekly/pastreports.htm).

Analysis
We built a collection of multivariate linear models using the z
scores of the aforementioned 23 search terms’ weekly search
fraction as explanatory variables and the CDC ILI index as
our dependent variable. The multiplicative coefficients associat-
ed with each search term in each multivariate linear model were
updated weekly as the CDC ILI index was updated. Our multi-
variate models can be expressed as

IðtÞ ¼
X23

i¼1

aiðtÞQiðtÞ þ e;

where I(t) is the percentage of national ILI physician visits, Qi(t)
is the search fraction associated with term i at time t, αi(t) is the
multiplicative coefficient associated with each term at time t,
and e is the normally distributed error term.

Model selection was performed using a least absolute shrink-
age and selection operator (LASSO) technique [20] at every sin-
gle week incorporating new CDC ILI information as it became
available. Therefore, our approach recalibrated weekly the

relevance of the search activity for each individual term accord-
ing to its historical prediction ability. The LASSO technique
uses an optimization algorithm that favors models that mini-
mize the mean squared error between the observations and pre-
dictions, while penalizing models containing many variables by
simultaneously minimizing the sum of the absolute size of the
regression coefficients.

We produced real-time estimates of ILI activity at time t, as-
suming that (1) we only had access to CDC-reported ILI data
up to 2 weeks prior (ie, up to t–2 weeks), and (2) assuming that
we had access to the real-time (time = t) number of searches in the
UpToDate database. Our dynamic approach is similar to the one
presented in Santillana et al [15],and inspired by data assimilation
techniques widely used in weather forecasting and oceanography
[21, 22] and supervised machine-learning techniques [20]. Our
methodology was implemented in Matlab version R2011a. The
LASSO routine was obtained from (available at: http://www.
stanford.edu/~hastie/glmnet_matlab/) in November 2013 [23].

RESULTS

The training period for our first prediction comprised 26 weeks
(5 November 2011–28 April 2012). Thus, our first real-time

Figure 1. Performance of our methodology along with Centers for Disease Control and Prevention (CDC)–reported influenza-like illness (ILI) activity. CDC ILI
is shown in black; our model, named UpToDate, is shown in light grey; and Google Flu Trends (GFT) estimates are shown with a dashed grey line for context.
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estimate of ILI was calculated for the week of 12 May 2012 (2
weeks later) using the optimal multivariate model. We pro-
duced a weekly time series consisting of real-time estimates
using our approach for the subsequent weeks up to the week
of 30 November 2013. Figure 1 shows our real-time estimates
and the CDC-reported ILI visits. GFT estimates are included
for context.

Our estimates predict very well the CDC-reported ILI visits
and outperform GFT estimates during the prediction period.
Moreover, our approach estimates accurately the peak of the
2012–2013 influenza season (in the week of 30 December
2012) and produces a slight overestimation of the influenza ep-
idemic curve in the second week of January 2013 (overestimat-
ing the flu activity by approximately 25% in relative terms—ie,
5.6% of ILI as opposed to the actual 4.5%). This overestimation
is minimal when compared to the GFT estimates (overestimat-
ing the influenza activity by 130% in relative terms—ie, 10.5% of
ILI as opposed to the actual 4.5%).

Our methodology has strong predictive power (Pearson cor-
relation of 0.972; a root mean square error [RMSE] of 0.2829%)
during the prediction period starting in the week of 12 May
2012 and ending in the last week of November 2013. Although

GFT has a very high Pearson correlation (0.9499) during this
same time period, it clearly fails to produce reliable estimates
for the peak of the 2012–2013 influenza season. This mismatch
is better captured by the RMSE, which shows that GFT esti-
mates are on average off by 1.4% of the national population
(ie, almost 5 times larger than our RMSE).

In Figure 2 we present a heatmap representing the relevance
of each search term in predicting influenza activity as a function
of time, during the validation time period. The term Tamiflu is
the strongest predictor, whereas sinusitis, influenza, H1N1, and
coronavirus display relevance as predictors during different
time periods.

DISCUSSION

Our findings demonstrate that combining a robust dynamic
methodology and subject-matter experts’ search activity more
accurately predicts influenza activity than the well-established
Internet-based tool Google Flu Trends. Specifically, the model
presented here has numerous strengths compared to GFT.
First, the model does not require expert supervision to adjust
the search terms over the course of the influenza season. Our

Figure 2. Heatmap representing the relevance of each search term in predicting influenza activity as a function of time (in weeks, starting in May 2012).
Clinicians’ Tamiflu search activity among clinicians is highly correlated with Centers for Disease Control and Prevention–reported influenza-like illness and
thus is found to be the strongest predictor by our algorithm. Sinusitis, influenza, H1N1, and coronavirus display significant relevance as predictors during
different time periods.
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approach can also accommodate and identify changes in clini-
cians’ selection of search terms over time while retaining the
model’s predictive power as demonstrated in Figure 2. Not
only does this strength address evolving medical vocabulary, it
also avoids “model drift” (static models typically match the
training data well; however, as time progresses its deviation
from truth may cause its predictions to drift farther and farther
from truth (as seen in Cook et al [10] with GFT).

The success of our approach suggests that low volumes of
queries (in the order of 100–10 000 seconds) in relevant sub-
ject-matter experts’ databases, such as UpToDate, provide a
promising way to identify meaningful signals to track influenza
activity. This will motivate the need for future research aimed at
testing the accuracy of our methodology at state and city levels,
and potentially in the prediction of other diseases. Moreover,
our findings in combination with those shown in Jormanainen
et al [16] suggest that data acquired from specialized databases
may have an improved signal-to-noise ratio and may be less
likely to be impacted by public disruption resulting from anxi-
ety or media reports on increased morbidity and mortality dur-
ing (novel) outbreaks of influenza.

Limitations in this data source include those inherent in most
novel data sources advanced for monitoring infectious diseases.
Although timely, these data sources lack the specificity observed
in traditional surveillance systems, which rely on hierarchical re-
porting procedures. These data streams therefore supplement tra-
ditional disease surveillance provided by organizations such as the
CDC. Finally, UpToDate data is not publicly available and thus
not ready to be used as an alternative disease detection sentinel.

CONCLUSIONS

In this study, we demonstrate that search queries from the Up-
ToDate database in conjunction with a dynamic multivariate
methodology can be successfully utilized to obtain real-time es-
timates of influenza incidence in the United States before the
release of official reports. Clinicians can use outcomes from
the model to monitor estimated levels of influenza in the United
States. We also discuss the potential usefulness and limitations
of digital data sources for infectious disease surveillance based
on search query data [5, 7, 8, 24–28]. Future work may include
analysis of smaller geographic units.
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